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Variable angle fixed arm peel and mandrel peel tests were performed on four
metal-polymer laminate systems. In total, four polymeric adhesives and three grades of
aluminium alloy (AA) substrates were used, enabling a wide range of material properties to
be encompassed in the study. Mandrel peel tests provided a direct determination of the
plastic bending energy (Gp) and adhesive fracture toughness (Ga). For the fixed arm tests, a
global energy-balance analysis (ICPeel software) was used to determine Ga and Gp
analytically. This was done via the calculation of the maximum curvature of the peel arm
(1/R0 ) and the root rotation angle (θ0) from a beam on elastic foundation model. In order to
investigate the accuracy of the analytical approach, an experimental method based on high
resolution digital photography enabled 1/R0 and θ0 to be measured independently. It was
then possible to compare these parameters by measurement and by analytical approach
(ICPeel software). θ0 and R0 relate to the slope and curvature of the peel arm at the
debonding front, respectively. In order to measure these parameters, the coordinates of the
edge of the peel arm were extracted from each digital photograph, and the slope and
curvature were calculated numerically from these curves. The crack tip was then defined as
the point of maximum curvature 1/R0, in accordance with traditional beam theory. It was
found that the smoothing in the calculation of first and second derivatives could generate
significant errors in the value of θ0. On the other hand, R0 was found to be a more robust
measurement, with little dependence on smoothing. Nevertheless, on most occasions, the
measured values of θ0 and R0, as well as the resulting Ga were shown to be in good
agreement with the analytical model. Since the peel fractures were generally cohesive, Ga
was compared with the cohesive fracture toughness (Gc) obtained from Tapered Double
Cantilever Beam (TDCB) tests with a fracture mechanics analysis. Good agreement was
observed, confirming that Ga is likely to be a geometry-independent fracture parameter.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Adhesively bonded joints are widely used in aerospace,
automotive and electronics applications, where knowl-
edge of the quality of the bonding is of significant
technological value. This is often measured by peel
strength—the force per unit width required to peel the
laminate apart. This however does not separate adhe-
sive fracture toughness (Ga) from plastic work in bend-
ing (Gp), which can be up to 90% of the total input en-
ergy (G). An analytical energy-balance approach [1–3]
has been used to estimate the adhesive fracture tough-
ness from fixed-arm and T-peel tests. The mechanical
properties of the substrates are given either as bilinear
or power-law work hardening stress-strain curves. By
assuming a beam on an elastic foundation model, the
rotation at the root (θ0) and the maximum curvature of
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the substrate (1/R0) are estimated. Large displacement
beam theory is used in the calculation of Gp, which is
then subtracted from the total external work G to give
Ga.

Full details of the energy-balance model are given
elsewhere [1, 2] and only simplified expressions will
be used here. Neglecting any tensile deformation of the
peel arm, which is usually small, the adhesive fracture
energy is given by:

Ga = G − G p (1)

The plastic work in bending is calculated via the inte-
gration of the moments acting on the peel arm during
the bending/unbending process. Analytical expressions
of Gp have been derived, and the only unknown is the
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Figure 1 Fixed arm peel parameters.

maximum curvature 1/R0 to which the peel arm is sub-
jected (Fig. 1).

Introducing a normalised curvature given by:

k0 = h

2εy

1

R0
(2)

the plastic bending energy is then given by:

G p = Eε2
yh

2
f (k0) (3)

where εy is the yield strain of the peel arm and f(k0) is
the area inside the normalised moment-curvature dia-
gram [2]. f(k0) is dependent on the material model and
work hardening coefficient. For a bilinear model (as
used in this work), expressions for f(k0) are given in
Appendix 1. If the adhesive layer under the attached
peel arm is assumed to have linear-elastic stiffness, the
relation between root rotation θ0 and maximum curva-
ture k0 is given by:

θ0 = (2εyk0)

√
√
√
√0.2 +

√

0.058 + ha E

3hEa
(4)

where E is the elastic modulus of the peel arm, Ea

is the elastic modulus of the adhesive layer, h is the
thickness of the peel arm and ha is the thickness of the
adhesive layer.

The tensile stress-strain (σ−ε) curve of a metallic
peel arm is fitted to either a bilinear or a power law
work hardening function [2] in order to enable the use
of analytical solutions. Although both models can be
successful, the aluminium alloys often showed a better

fit to a bilinear function and therefore only this model
is used in this work. It is of the form:

σ = Eε for ε ≤ εy,

and

σ = Eεy + αE
(

ε − εy
)

for ε > εy (5)

α is the work hardening coefficient, i.e. the ratio of
plastic modulus to elastic modulus.

A direct experimental approach using a mandrel peel
test can also be used for the determination of Ga [4, 5].
This involves deforming the peel arm around a roller
and applying an alignment force to assure good con-
formation. The use of this method for metal-polymer
laminates has shown promise [4–6].

This direct experimental approach has the advantage
of not relying on any analytical theory, and it does not
require a mechanical model for the peel arm material.
However, there may be occasions when the particular
geometry of a T-peel or fixed arm peel methods would
be preferred. Consequently, reliance on a theoretical
analysis of such procedures needs to be accommodated.

By measuring the geometrical parameters involved
in the analytical procedure, then the accuracy of these
methods could be routinely audited. The present work
proposes the optical measurement of maximum curva-
ture of the peel arm (1/R0) and root rotation angle (θ0)
via high-resolution digital photography. Therefore, the
adhesive fracture toughness Ga could be determined
for each laminate by four different methods:

1. Fixed-arm peel with ICPeel analysis.
2. Fixed-arm peel with measured R0.

T AB L E I Materials and geometries

Sample Adhesive Substrates

Peel arm
thickness
(mm)

Bond line
thickness
(mm)

Dimensions of peel arm
(bond line) (mm)

ESP 110/5754-0 ESP110 (rubber-toughened epoxy
paste adhesive, general purpose)

AA 5754-O 1.00 0.40 15×200 (15×180)

Adhesive F/2024-T3 Adhesive-F (toughened epoxy film
adhesive, cured in an autoclave)

AA 2024-T3 0.63 0.12 15×350 (15×300)

PP/5154-0 Polypropylene (bonded in a
continuous industrial process)

AA 5154-O 0.24 0.95 20×200 (20×180)

XD4600/5754-0 XD4600 (rubber-toughened epoxy
paste adhesive, automotive
applications

AA 5754-0 1.00 0.25 15×200 (15×180)



3. Fixed-arm peel with measured θ0.

4. Mandrel peel test.

The purpose of this paper is to investigate if these ap-
proaches have practical merit for metal-polymer lami-
nates and to comment on the consequences.

2. Materials and specimen preparation
Four different types of laminates were used in the ex-
perimental work, and Table I summarises the charac-
teristics of each sample. The adhesives were ESP110 (a
rubber toughened epoxy adhesive for general engineer-
ing applications), Adhesive-F (a toughened epoxy sys-
tem for aerospace applications), a polypropylene (PP)
polymer and XD4600 (a rubber toughened epoxy adhe-
sive for automotive applications). The substrates were
aluminium alloys (AA) 5754-O, 5154-O and 2024-T3.

For ESP110/5754-O laminates, the substrates were
blasted with alumina grit (mesh 400) and etched in a
chromic acid solution for 30 min at 60◦C. Cure took
place in a hot air oven for 45 min at 150◦C. Adhesive-
F/2024-T3 laminates were initially prepared as panels
and later machined into individual specimens. The sur-
faces were treated in a FPL-type etching process and
primed with an aerospace-grade epoxy compound. The
laminates were cured in an autoclave for 1 h at 132◦C at
a pressure of 2.8 bar. The PP/5154-O laminate consisted
of two thin aluminium foils bonded by a polypropy-
lene layer (for the fixed-arm tests, one of the sides was
bonded to a rigid base plate). For XD4600/5754-O lam-
inates, the substrates were also grit blasted and chromic
acid etched. The laminates were cured at 150◦C for
15 min followed by another 15 min at 190◦C.

In all cases the sides of the specimens were care-
fully polished in order to produce sharp, plane edges,
necessary for greater accuracy in the photographic
technique.

3. Experimental procedure
Fixed-arm [7] and mandrel peel experiments [4] were
conducted on an Instron universal testing machine. In
all cases the crosshead speed was adjusted in order to
give a constant 5 mm/min crack growth, and tests were
performed at standard air conditions (21◦C, 55% RH).
Data were collected over lengths of at least 50 mm, and
at least five specimens were tested per sample.

Fixed-arm tests were performed at 45◦, 90◦ and 135◦
angles. The measurement of substrate curvature in-
volved high quality digital photography and a subse-
quent image analysis that determined the local radius
of curvature. The photography also provided means of
measuring the root rotation.

The mandrel peel procedure is presented in detail
elsewhere [4, 6]. The peel arm is bent around a cir-
cular roller whilst an alignment force is applied to the
base of the laminate. From an unbonded laminate the
plastic work in bending and coefficient of friction are
obtained, and from a bonded laminate the adhesive
fracture toughness is measured. Mandrel radii were

T AB L E I I Tensile stress-strain data for peel arm materials (bilinear
fit up to 5% strain)

Peel arm material E (GPa) σ y (MPa) εy (%) α

AA 2024 T3 70 360 0.510 0.035
AA 5754-O 69 108 0.160 0.027
AA 5154-O 74 145 0.195 0.010

available in the range 5 mm to 20 mm, and alignment
forces up to 50 N/mm were used.

Tensile stress-strain measurements were conducted
on all peel arm materials at 1 mm/min (strain rate
2×10−4 s−1) where an optical extensometer was used
to measure axial strain.

4. Results and discussion
4.1. Uniaxial tensile tests
The best fit to the experimental tensile stress-strain data
was found by limiting the curves to a maximum strain
of 5%, which is above the deformation encountered by
a peel arm in any of the peel tests. Table II summarises
the tensile stress-strain results for the peel arms with a
bilinear fit. The small values for yield strain reinforces
the importance in using extensometers for gathering
pre-yield data for the determination of elastic modulus.

4.2. Root curvature and rotation
A high-resolution digital camera fitted with macro
lenses produced photographs of the specimens during
the peeling process, and a personal computer recorded
the photographs automatically. Computer programs
were developed for an automatic computation of lo-
cal curvatures. Fig. 2 illustrates the methodology for
this calculation.

In order to make the calculations less sensitive to
translations or rotations of the images, the x-y coor-
dinates are parameterised by the arc length s over the
upper edge of the peel arm. The origin of s is unimpor-
tant, and was arbitrarily taken as the left-most pixel in

Figure 2 An illustration of curvature measurement using digital pho-
tography. The radius of curvature of the neutral line (R) is the radius of
the upper edge plus half of the peel arm thickness (h/2).



Figure 3 Slope (φ) and curvature (1/R) plotted against arc length s. Data relate to ESP110/5754-O.

the image. With reference to Fig. 2, the slope φ of the
peel arm can be expressed as:

φ = dy

dx
= dy

ds

ds

dx
= y′

x ′ (6)

where x(s) and y(s) are the parameterised coordinates
and ′ = d

ds . The local curvature is given by

1

R − (h/2)
= x ′′y′ − x ′y′′

[

(x ′)2 + (y′)2
]3/2 . (7)

where ′′ = d2

ds2 and h/2 is half of the peel arm thickness
(since R is the radius of the neutral axis of the peel
arm). The root rotation θ0 is therefore the value of φ

at the crack tip, and the root curvature R0 is the value
of R at the crack tip. Making so the point on the upper
edge nearest to the crack tip, then θ0 = φ(so) and R0 =
R(so).

The calculations of first and second derivatives of
x(s) and y(s) require a smoothing procedure since these
are a series of discrete points (pixels) instead of contin-
uous functions [8, 9]. This is detailed in Appendix 2. In
turn, φ and 1/R can be plotted against the arc length s,
as illustrated in Fig. 3. It can be seen from Equations 6
and 7 that φ is defined in terms of first derivatives and
R(s) in terms of first and second derivatives. Therefore,
the individual values of R would be expected to carry
larger errors than those due to φ. This is also illustrated
in Fig. 3 where there is greater scatter in the data for
1/R.

θ0 and R0 are those values of ϕ and R at the crack tip;
therefore the value of so for the crack tip has to be ac-
curately defined. The digital photography includes the
crack tip but this could not be used directly for defining
these co-ordinates. Although the edge of the peel arm
could be easily extracted from each image, the crack tip
showed extensive micro-cracking and stress-whitening
phenomena, which prevented a clear definition of its lo-
cation. Therefore, the peak in local curvature was used
as a definition of ‘effective’ crack tip, i.e. 1/R(so) =
max(1/R(s)). Two issues arise from this approach. First,
the adopted definition of crack tip also relies on sec-
ond derivatives. Second, φ changes significantly with a

change in s. It transpires that θ0 is strongly dependent
on the position of the peak in curvature, while R0 is
basically the value of this peak.

Consequently, it was found that the value of θ0 is
very sensitive to the smoothing procedure, while R0

is very insensitive to this process. This is because the
location of so varies as the curves become smoother,
but the value of maximum curvature changes little.

The radius of curvature at the root R0 could be cal-
culated theoretically via a beam on elastic foundation
model (ICPeel software) [10]. A comparison of mea-
sured radius of curvature with calculated radius of cur-
vature shows excellent agreement, particularly when
there is a good fit of stress-strain data to a bilinear
function (as in the case of the aluminium alloys used
in this study). This is shown in Fig. 4 for and Fig. 5 for
two of the laminates.

There are three ways of obtaining a value of root ro-
tation angle, namely by direct measurement (for which
there are two options), by calculation from ICPeel [10]
and by calculation from a measured value of R0 (Equa-
tion 4). The two methods of measurement of θ0 dif-
fer in the way the crack tip is located, either numer-
ically by the peak in local curvature (as previously
discussed) or visually via the direct observation of the
photographs.

The direct measurement of angle θ0 is achieved
by locating the crack tip from the photographs and

Figure 4 Calculated versus measured R0 for ESP110/ 5754-0 (offset
zero).



Figure 5 Calculated versus measured R0 for Adhesive F/ 2024 T3.

measuring the slope of the peel arm at this point. How-
ever, there can be some practical problems with this ap-
proach. First, the angle might be small and in general,
the smaller the angle the larger the percentage error
of measurement. Second, micro-cracking and defor-
mations in the adhesive layer may ‘blur’ the definition
of the crack tip. However, previous attempts with this
method for measuring the root rotation angle [1] for
polymeric laminates did record some success. For that
study, the measured values of θ0 were relatively large
(e.g. 20 to 60◦). Nevertheless, the authors recorded er-
rors of measurement for θ0 of ±6◦, which is acceptable
for those relatively large angles, and there was rea-
sonable agreement between calculated and measured
values for θ0. Unfortunately, with metal-polymer lam-
inates both problems were prevalent and therefore the
direct measurement of θ0 was not found to have suffi-
cient accuracy.

Meanwhile, the measurement of θ0 via the peak in lo-
cal curvature showed sensitivity to the smoothing pro-
cedures (see Appendix 2), producing large percentile
errors in the value of θ0 since the angles were small.

The current inconsistency in determining a mea-
surement of θ0 has prevented our use of this ap-
proach for the determination of Ga. However, it
is anticipated that in future a method should be
possible.

Figure 6 Adhesive fracture toughness results for ESP110 / 5457-O.

Figure 7 Adhesive fracture toughness results for Adhesive-F / 2024-T3.

4.3. Adhesive fracture toughness (Ga )
For the fixed arm peel experiments (in all three peel
angles), Ga was calculated from only two approaches
after the root rotation methodology was eliminated:

(i) Calculation of plastic work in bending based on
the measured peel arm curvature (R0 Measurement);
(ii) Full analytical solution (ICPeel).

Ga was also measured directly by the mandrel peel
test. In addition the cohesive fracture toughness of the
adhesive was measured using Tapered Double Can-
tilever Beam (TDCB) geometry, according to an Euro-
pean Society for Structural Integrity (ESIS) test proto-
col [7].

Fig. 6 shows the results for adhesive fracture tough-
ness for the ESP110/5457-O laminates. The determi-
nations of Ga based on measured R0 and calculated R0

show agreement within the scatter bands of measure-
ment. There is also agreement with the Ga value from
the mandrel test. All failures are cohesive, although
there is far less adhesive coating on the peel arm than
that left on the base plate. However, agreement with
the cohesive fracture toughness from the TDCB test is
good. Therefore, in general it would be reasonable to
suggest that all data were in agreement to within ex-
perimental error, as defined by the measurement scatter
bands.

Fig. 7 shows the results for Adhesive-F/2024-T3. Co-
hesive fractures were observed at the lower fixed-arm
peel angles and in the mandrel tests with low alignment
forces. These adhesive fracture toughness values show
agreement and also agree with the cohesive fracture
toughness from the TDCB test.

Some interfacial failure was observed in the fixed
arm peel tests as the peel angle increased. In general
there is reasonable agreement between Ga derived by
the analytical model and measured R0. The peel test at
a fixed peel angle of 135◦ exhibited the highest level of
adhesive fracture and not surprisingly a lower value was
obtained for the fracture toughness. Yet, good agree-
ment occurred between the Ga values based on calcu-
lated and measured R0.

Fig. 8 shows results for XD4600/5754-0 laminates
where again there is generally good agreement between



Figure 8 Adhesive fracture toughness results for XD4600 / 5457-O.

Figure 9 Adhesive fracture toughness results for PP/5154-O.

each of the methods. The Ga values from the fixed
arm tests agree well between determinations based on
ICPeel and measured R0. All peel fractures were co-
hesive, although only a small coating of adhesive was
observed on the peel arm. Nevertheless, the cohesive
fracture toughness showed agreement with the Ga val-
ues by both fixed arm and mandrel peel, although only
just within the scatter bands of measurement.

The results for the PP/5154-O laminate are shown
in Fig. 9 where it can be seen that a less extensive set
of measurements were made. In particular, there are no
mandrel or TDCB measurements.

It was not possible to conduct measurements at small
angles in the fixed arm test, since the peel forces were
sufficiently large that the peel arm fractured. Never-
theless, the agreement between the values of Ga by R0

measurement and R0 calculation through ICPeel soft-
ware is reasonable. However, the limited database for
this laminate could not include scatter bands for the Ga

by R0 measurement.

5. Concluding comments
Results on four different aluminium laminate systems
have enabled the measurement of root rotation and ra-
dius of curvature of the peel arm to be made. High-
resolution digital photography is involved in both mea-
surements. The root rotation angle can be determined

from the first derivative of the co-ordinates of the peel
arm curvature. The value of θ0 must relate to the crack
tip. In turn, the co-ordinates of the crack tip can be
obtained at the maximum curvature of the peel arm.
Unfortunately, this is only possible when the resolution
of the digital photography is high and the smoothing of
the curvature data below a certain level. In time, such
conditions will be routinely achievable, but this was
not always so in the experimental results reported here.
Nevertheless, the principles of measurement have been
established.

Measurement of radius of curvature for the peel arm
can however be made with good accuracy, and these
data are not sensitive to the smoothing of the local
curvature data. It certainly agrees well with calculated
values of radius of curvature using ICPeel software.
Moreover, when the measured value of R0 is used to
determine plastic bending energy and in turn adhe-
sive fracture toughness, the Ga values agree well with
those from direct experimental determination of adhe-
sive fracture toughness, as obtained in a mandrel peel
procedure.

The stress-strain behaviour of the aluminium alloy
substrates used in this study could be described accu-
rately by a bilinear function. Therefore, the analytical
method used for calculating R0 would be expected to
be reasonable. However, the advent of being able to
measure this curvature means that on any other occa-
sion when the fit of the stress-strain data might not be
so good, that a combination of measured radius, peel
strength and deformational behaviour for the peel arm
can still lead to an accurate value for plastic bend-
ing energy and in turn adhesive fracture toughness.
Therefore, this combination of measurements can ac-
commodate test geometries such as fixed arm peel and
T-peel for an objective determination of adhesive frac-
ture toughness.

A mandrel peel procedure remains a viable direct
method for measuring adhesive fracture toughness.

Both fixed arm and mandrel peel methods gave cohe-
sive peel fractures. However, the thickness of adhesive
on the peel arm was often quite small. Nevertheless,
the Ga values showed good agreement with cohesive
fracture toughness values obtained from TDCB frac-
ture tests. This suggests that adhesive fracture tough-
ness obtained form a peel test is providing a geometry
independent value for peel toughness.
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Appendix 1: f(k0) for a bilinear stress-strain
model
There are three cases to consider in the determination
of the f(k0) functions:



Case 1: Elastic bending and unbending

0 < k0 ≤ 1

then

f (k0) = 0

Case 2: Plastic bending and elastic unbending

1 < k0 ≤ 2
(1 − α)

(1 − 2α)

then

f (k0) = (1 − α)

[
1

3
k2

0 + 2

3k0
− 1

]

Case 3: Plastic bending and unbending

k0 > 2
(1 − α)

(1 − 2α)

then

f (k0) = 4

3
α

[

(1 − α)
(

1 − α

2

)

− 1

8

]

k2
0 + 2(1 − α)

×
(

1 − α

2

)

(1 − 2α)k0 + 2(1 − α)

3(1 − 2α)k0

×β − (1 − α)γ

where

β = [

1 − 2α2(2 − α) + 4(1 − α)3
]

and

γ = [

1 + 2α(1 − α) + 4(1 − α)2
]

In practice, Case 3 is the most common.

Appendix 2: Smoothing procedures in the
derivation of θ0 and R0

Fig. 2 (in the main text) illustrates a photograph of
the curvature in the peel arm during peeling. The edge
of the peel arm has to be defined in terms of the co-
ordinates (x, y). These coordinates are then parame-
terised by the arc length s in order to give insensitiv-
ity to any rotation of the images. The first and second
derivatives of the functions x(s) and y(s) then have to be
obtained in order to use Equations 6 and 7 to calculate
φand R, from which θ0 and R0 can then be derived.

The first (′ = d
ds ) and second (′′ = d2

ds2 ) derivatives
were computed by conducting a least-squares fit for
each point along the curves of parameterised coordi-
nates. Fig. A1 illustrates the calculation of the first
derivative dx/ds (second derivatives were computed
by applying the same procedure to the curves of first
derivatives).

Figure A1 Calculation of derivatives with a convolving least-squares
interval.

Figure A2 Dimensions of a simulation image.

Figure A3 Local curvatures with different size intervals (ds).

The values of first and second derivatives are there-
fore dependent on the size of the interval from which
the least-squares fits are calculated. This is defined by
the distance 2ds (in pixels) where i is a central point
(Fig. A1). Increasing ds will result in reduced noise,
but if ds is excessively large then important features of
the curves may be smoothed out. Therefore, an appro-
priate degree of smoothing should be found through
optimising the value of ds.

In order to study the influence of the interval ds, a se-
ries of simulation images were analysed. These images
consisted of a straight segment followed by an arc of
90◦ of constant radius, as shown in Fig. A2. Although
several images with different radii were analysed, only
the 500 pixel radius will be discussed here.

In this image the values of R0 and θ0 are 500 pixels
and 0◦, respectively. The methods for computing R0



Figure A4a Radius of curvature R0 as a function of smoothing interval
ds.

Figure A4b Root rotation θ0 as a function of smoothing interval ds.

and θ0 were then applied using different values of ds,
and the effect of smoothing could be investigated.

Fig. A3 shows the local curvature calculated with
three different values for ds. The smallest value of ds
(30 pixels) produces the least smoothing and as a con-
sequence some noise appears in the region of constant
curvature, but the transition between zero curvature and
the plateau is sharper and better defined. As ds is in-
creased, the curve becomes smoother, but so does the
transition region, and the edge of the plateau is shifted
to the right.

Plots of 1/R versus s are used to define the onset of
maximum curvature. θ0 is then determined as the value
of φ at this value of s. Consequently, as smoothing
increases (larger values for ds), the edge of the plateau
is shifted and this affects the value of θ0 in quite a
significant way. Fig. A4 shows the computed values of
R0 for the simulated image. Beyond a certain minimum
ds, R0 is very close to the true value and changes little
with increasing smoothing.

The main difference between simulated and actual
images is that in the latter the radius of curvature is

not constant, but decreases gently from the crack tip
onwards. This implies that, in actual images, a high
degree of smoothing will also generate errors in the
value of R0. Therefore, an optimum value for ds should
be large enough to avoid excessive noise, but small
enough so that the peak in local curvature is not shifted
excessively.

Unfortunately, there is no single optimum value for
ds, but a simple criterion can be adopted. It was de-
cided that the error in local curvature of a circular arc
(going from 0 to 90◦) should be below 5%. For the case
in Fig. A3, a value of ds should be chosen so that the
variations on the plateau are less than 5% of the aver-
age value. By analysing a series of computer-generated
images, it was found that this criterion was satisfied
when the length of ds covered approx. 4◦ of an arc.

However, in order to adopt this criterion, an estima-
tive of the maximum curvature (in pixel−1) should be
available before the final measurement of local curva-
ture. This was possible by the use of an iterative com-
puter program that performed several calculations of
local curvature with variable ds until the requirement
was satisfied (however, it should be noticed that the
value of R0 does not vary significantly with a change
in ds).

On the other hand, the value of θ0 is strongly depen-
dent on ds, as shown in Fig. A4. The true value for the
simulation image, θ0 = 0, is actually never achieved.
It seems that an extrapolation of these data to ds = 0
would give a good estimate of the true θ0. However,
below a certain value of ds the curves become domi-
nated by noise and it is sometimes difficult to determine
precisely when this occurs. The method has promise,
but given its complexity the measurement of R0 was
preferred.
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